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We calculate the α-particle induced reactions on 17,18O, 19F, and 23Na, in the energy range
0 ≤ Eα ≤ 10 MeV, with a particular attention to the branching ratios of populated discrete
levels in the (α,n) channels. Since there are too many open channels to employ the R-matrix
theory, we apply the statistical Hauser-Feshbach model to calculate these reaction cross sections
and branching ratios. The branching ratio is defined as

bn =
σn∑

i σi + σc
, (1)

where σn is the n-th level production cross section after the neutron emission, and σc is the
production of the continuum state. In the cases of our target nuclei and the energy range of
interest, the residual nuclei of the neutron emission channel are always in their discrete states,
so that σc can be negligible.

The statistical Hauser-Feshbach code CoH3 [1, 2] is used to calculate the α-particle induced
reaction. The optical potential parameter for the α-particle is taken from the work by Avrigeanu
et al. [3]. The Koning-Delaroche optical potential [4] is applied to the neutron and proton
channels. Because the (α,d) cross section is too small in the case of this study, we neglected the
deuteron channel. Properties of the discrete levels (excitation energy, spin, and parity) are taken
from RIPL-3 [5], with some minor modifications based on the most recent ENSDF database [6].
All the other model parameters, such as the level density and the γ-ray strength functions,
are the default built-in parameters in CoH3. At higher incident energies, a emitted proton
sometimes leaves the residual nucleus in its continuum state. Generally speaking, however, the
excitation energy is still not so high. The branching ratios are mainly determined by the optical
model transmission coefficients and the spin and parity of discrete levels. We also note that
the calculated ratios are relatively robust, although the absolute cross sections of discrete level
production could have some uncertainties due to the optical potential parameters employed.

The calculated (α,n) cross sections for 17,18O, 19F, and 23Na are shown in Fig. 1. Because the
statistical model does not predict any resonance structure, these cross sections are understood
to be energy-averaged. Besides the (α,n) cross section, some reaction channels have comparable
cross sections to (α,n). They are 17O(α,nα) and 19F(α,p), which are also shown in this figure.

The calculated branching ratios for 17,18O, 19F, and 23Na are shown in Fig. 2. Wilson et
al. [7] performed the similar calculations with the Hauser-Feshbach code GNASH [8, 9] in the
past. There is another model prediction by Lessor and Schenter [10], which is based on some
available experimental data. We compare our calculated results with these former predictions
in Figs. 3–6.
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Figure 1: Calculated (α,n) reaction cross sections for 17,18O, 19F, and 23Na, shown by the thick
curves. The partial cross sections for the first five levels, σn, n = 0–4, are shown by the thin
curves.
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Figure 2: Calculated branching ratios for the 17,18O, 19F, and 23Na(α,n) reactions to the discrete
states in 20,21Ne, 22Na, and 26Al.
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Figure 3: Calculated branching ratios of the 17O(α,n) reaction to the discrete states in 20Ne.
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Figure 4: Calculated branching ratios of the 18O(α,n) reaction to the discrete states in 21Ne.
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Figure 5: Calculated branching ratios of the 19F(α,n) reaction to the discrete states in 22Na.
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Figure 6: Calculated branching ratios of the 23Na(α,n) reaction to the discrete states in 26Al.
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